Files
python_skripte/imdb_parsen/test.py
jonnybravo 6678aed520
All checks were successful
test / build-docs (push) Successful in -1m26s
18082025
2025-08-18 16:08:22 +02:00

49 lines
1.4 KiB
Python

from bs4 import BeautifulSoup
import requests
import re
import pandas as pd
# Downloading imdb top 250 movie's data
url = 'http://www.imdb.com/chart/top'
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
movies = soup.select('td.titleColumn')
crew = [a.attrs.get('title') for a in soup.select('td.titleColumn a')]
ratings = [b.attrs.get('data-value')
for b in soup.select('td.posterColumn span[name=ir]')]
# create a empty list for storing
# movie information
list = []
# Iterating over movies to extract
# each movie's details
for index in range(0, len(movies)):
# Separating movie into: 'place',
# 'title', 'year'
movie_string = movies[index].get_text()
movie = (' '.join(movie_string.split()).replace('.', ''))
movie_title = movie[len(str(index))+1:-7]
# year = re.search('\((.*?)\)', movie_string).group(1)
place = movie[:len(str(index))-(len(movie))]
data = {"place": place,
"movie_title": movie_title,
"rating": ratings[index],
# "year": year,
"star_cast": crew[index],
}
list.append(data)
# printing movie details with its rating.
for movie in list:
print(movie['place'], '-', movie['movie_title'],
'Starring:', movie['star_cast'], movie['rating'])
## .......##
df = pd.DataFrame(list)
df.to_csv('imdb_top_250_movies.csv', index=False)